Kokolitofory - mali bohaterowie mórz i oceanów

Kokolitofory (Coccolithophores), to tajemnicze morskie żyjątka, które wpływają na klimat na Ziemi bardziej niż Wam się wydaje.

Ciepłe bajorko Darwina

Wygląda na to, że Darwin i tym razem miał rację. Ciepłe bajorka w pobliżu źródeł hydrotermalnych są lepszym środowiskiem do powstania życia niż okolice dna oceanów w pobliżu tzw. ventów

Mech i wielkie wymieranie

Pierwsze mchy pojawiły się na lądzie w ordowiku. Uruchomiona przez nie reakcja hydrolizy krzemianów doprowadziła do zlodowacenia i wielkiego wymierania.

Zagłuszanie oceanu

Ocean pełen jest dźwięków. Trzęsienia ziemi, wybuchy wulkanów i odgłosy zwierząt. Coraz częściej jednak słychać hałas ludzkich urządzeń. Hałas, który zabija wieloryby.

Kleszcze i niesporczaki w kosmosie

Nie są tak odporne jak bakterie, a jednak. Niesporczaki i kleszcze są w stanie przetrwać podróż międzygwiezdną i zasiedlić kosmos.

czwartek, 14 listopada 2013

Jak długo żyją małże i co nas to obchodzi?

Małże żyją długo. Analizy łuków przyrostowych skorupki małży z gatunku Arctica islandica wskazują, że należą one do najdłużej obecnie żyjących zwierząt na Ziemi. Osobnik, którego wiek obliczano, rozpoczął swój żywot w czasach "gdy wymarła polska szlachta" czyli za króla Olbrachta. Niestety, małż już nie pobije swojego rekordu, bo podczas badań uczeni rozerwali skorupki i uśmiercili biedaka. Ale i tak rekord pozostał - 507 lat.

Historia liczenia daty "urodzin" Arctica islandica rozpoczęła się dobrych parę lat temu, gdy u wybrzeży Islandii wyłowiono małże o dużej liczbie łuków przyrostowych na skorupce. Dokładna analiza wykazała, że łuki te reprezentują roczne przyrosty skorupki małża, podobnie jak roczne przyrosty słojów drzew. Zabrano się więc do liczenia ileż to łuków, czyli lat, mają małże islandzkie. W 2006 roku wyliczono, że 405. Znaczyło to, że żyją od 1601 roku.
Arctica islandica (fot. Manfred Heyde CC-BY)
Ostatnio jednak wrócono do obliczeń i okazało się, że łuków jest jeszcze więcej, bo 507 (Munro & Blier, 2012). Zatem uśmiercony małż żył od 1499 roku, czyli od czasów króla Jana Olbrachta. A. islandica doczekała się więc miana Matuzalema wśród zwierząt (Schoene et al., 2005). Takie małże to gratka dla paleoklimatologów, gdyż w łukach przyrostowych zachowały się proporcje składu izotopów stałych tlenu i węgla w wodzie, w której żył małż, odpowiednio do czasu ich powstania. A stąd już łatwa droga do analiz paleośrodowiskowych.
Przekrój przez skorupę małża. Widać linie przyrostu z zaznaczoną datą 1816. Zapis kończy się w 1868 r. Można sprawdzić (wg Schoene et al., 2005).
Zapis izotopowy odczytany z muszli A. islandica (wg Schoene et al., 2005).
Badania nad długowiecznością małży dostarczyły też informacji o starzeniu się organizmów tkankowych, do których należysz także Ty Drogi Czytelniku. Być może znaleziono eliksir młodości i niebawem będziemy żyli po kilkaset lat, jak małże (dobra okazja do podniesienia wieku emerytalnego). Okazuje się bowiem, że źródłem długowieczności małży jest ich odporność na biologiczny proces utleniania lipidów. Mówiąc wprost, małże mają niski wskaźnik peroksydacji lipidów (PI). Im mniejsze PI tym dłużej żyją.

Źródła:
Munro, D. & Blier, P.U. 2012. The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell, 11: 845-855.

Schoene, B. et al., 2005. Climate records from a bivalved Methuselah
(Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology, 228: 130-148.


Fot. w nagłówku: bathyporeia (flickr.com)

poniedziałek, 11 listopada 2013

Topnienie lądolodu grenlandzkiego spowoduje... obniżenie poziomu morza

Tak, to prawda. Wbrem obiegowej opinii, stopnienie lądolodu grenlandzkiego nie spowoduje podniesienia poziomu morza na całym świecie. Można nawet uogólnić i stwierdzić, że nie wpłynie to na eustatyczne podniesienia poziomu morza. Są natomiast takie rejony świata, gdzie poziom morza wręcz obniży się. I to znacznie. Nawet do 100 m. Wiem, że w mediach szerzy się klimatyczny defetyzm i ogólnie wciska się ludziom, że zmniejszająca się czapa lodowa na Grenlandii spowoduje zalanie olbrzymich obszarów nadmorskich w Europie, w tym także i w Polsce. Dlaczego ja tak nie uważam?

Zacznę do tego, że Ziemia to nie drewniana, ani żelazna kula z rozlaną po powierzchni wodą, która wypełnia zagłębienia. Ziemia ma dość skomplikowany kształt. Na tyle skomplikowany i niepowtarzalny, że nazwano go geoidą. Geoida ma wybrzuszenia i zagłębienia, których powierzchnia nie pokrywa się z elipsoidalną linią referencyjną stosowaną do pomiarów wysokości. Trudno więc porównać ze sobą poziomy morza w różnych układach odniesienia. Linia "zero" jednego układu odniesienia może różnić się od takiej samej linii w drugim układzie nawet o 50 cm lub więcej w samej tylko Europie. Dla porównania - układ odniesienia Triest (Adriatyk) różni się od układu Kronsztad (Bałtyk) o +0.67 m w stosunku do powierzchni referencyjnej elipsoidy. Trudno więc orzec, czy zmiany poziomu morza np. w układzie Kronsztad dotyczą wyższego poziomu morza czy też odkształcenia geoidy.

Dopiero do kilkunastu lat znamy w miarę dokładny kształt geoidy, który można stosować jako globalny poziom odniesienia w pomiarach satelitarnych. Dlatego też dopiero od niedawna można mówić o globalnych zmianach. W dalszym jednak ciągu pomiary trwają i należy spodziewać się kolejnych, dokładniejszych odwzorowań powierzchni geoidy. Ostatni model grawitacyjny Ziemi EGM2008 pochodzi sprzed paru lat (np. Pavlis et al., 2012). Odkształcenia geoidy powodują, że część wody spływa do zagłębień w geoidzie, więc tam należy spodziewać się wzmożonego napływu wód, większego niż w miejscach wyniesionych. Np. wschodnie wybrzeża USA są obniżone w stosunku do Grenlandii o prawie 150 m (patrz poniższy rysunek). Nierównomierny rozkład materii w skorupie ziemskiej powoduje też nierównomierny rozkład potencjału grawitacyjnego. To jedna z przyczyn, dla której poziom morza nie będzie podnosił się równomiernie na całym świecie, jak w laboratoryjnej menzurce.
Kształt geoidy ziemskiej wg modelu EGM2008 z widocznymi odchyleniami w stosunku do referencyjnej elipsoidy (NGA).

Powyższy akapit zawiera także dalsze wytłumaczenie dotyczące lądolodu grenlandzkiego, który - jak się domyślacie - sporo waży. Z wyliczeń P.J. Petersena wynika, że lądolód grenlandzki waży 2.66946 x 1018 kg. To oczywiście dużo, więcej niż jesteśmy w stanie sobie wyobrazić. Taka masa lodu ma swój potencjał grawitacyjny, który przyciąga wodę oceanu i powoduje jej podniesienie w pobliżu Grenlandii. Gdy zdejmiemy z niej lądolód, Grenlandia stanie się lżejsza, a wtedy woda oceaniczna odpłynie od niej. Przyciąganie grawitacyjne Grenlandii z lądolodem powoduje wygięcie powierzchni oceanu w promieniu dochodzącym do 2000 km, zatem większość pn. Atlantyku ma powierzchnię grawitacyjnie podniesioną (rysunek poniżej).
Grawitacyjne ugięcie powierzchni oceanu w pobliżu obiektu o dużej masie (góra); zmiany poziomu morza w zależności od tego który lądolód stopnieje (wg Battersby'ego, 2013).
I tu pojawia się kolejna kwestia. Ciężki lądolód wgniata skorupę kontynentalną Grenlandii w plastyczny płaszcz ziemski. Gdy lód zniknie, lżejsza Grenlandia podniesie się. I teraz uwaga - stopnienie lądolodu to mniejsza grawitacja i podniesienie izostatyczne Grenlandii, które spowodują obniżenie poziomu morza u wybrzeży tej wyspy o około 100 m. Siedząc dostatecznie długo na brzegu Grenlandii zobaczymy, że morze cofa się i opada. Podobne zjawisko zachodzi na tarczy bałtyckiej, która ciągle jeszcze podnosi się po zrzuceniu lądolodu ostatniego zlodowacenia, powodując, że Bałtyk staje się coraz płytszy.

Zjawisko obniżenia poziomu morza dotknie w zasadzie całą Europę. Oczywiście im dalej od Grenlandii, tym obniżenie poziomu morza będzie słabsze, ale np. Islandia, Irlandia czy zachodnia Szkocja doczekają się obniżenia poziomu morza, zamiast ogłaszanego nieustannie podniesienia. W Polsce pewnie też poziom morza opadnie, ale nieznacznie (uwaga - nie biorę pod uwagę innych składowych zmian poziomu morza).

Oczywiście, zjawiska te nie zachodzą z dnia na dzień. Trudno więc dokładnie powiedzieć w jakim tempie będzie odbywało się izostatyczne podnoszenie tarczy grenlandzkiej i przyległych do niej obszarów. Z teoretycznych rozważań wynika, że Arktyka wolna od lodu spowoduje ostatecznie podniesienie poziomu głównie w południowym Atlantyku i pd. Pacyfiku - przy założeniu, że czapa lodowa Antarktydy pozostanie nietknięta. Pewien wpływ na poziom morza ma także woda z górskich lodowców, ale podobnie do Grenlandii, ona także spowoduje zdjęcie ciężaru z gór i ich izostatyczne podniesienie, a więc relatywne obniżenie poziomu morza.
Rekordowy zasięg lodu antarktycznego z września 2012 (NASA).
Z obserwacji ostatnich lat wynika, że faktycznie dość szybkiemu topnieniu Arktyki towarzyszy przyrost czapy lodowej na Antarktydzie, szczególnie w jej wschodniej części. W 2012 r. odnotowano rekordowy zasięg pokrywy lodowej Antarktydy, przy jednoczesnym, rekordowo małym lądolodzie grenlandzkim. Jak widać ubytkowi lodu w Arktyce towarzyszy przyrost lodu na antypodach. Czy te procesy równoważą się? Trudno powiedzieć. Jednocześnie notuje się wiarygodne dane o podnoszeniu się poziomu morza. Wydaje się jednak, że jest to w większości efekt przyrostu objętości wody wskutek podniesienia jej temperatury (termalnej ekspansji oceanu).
Jak wynika z powyższego obrazka wg Cazenave (tak, to Anny) i Nerema (2004), obecnie ekspansja termiczna ma największe znaczenie. Ci sami autorzy przedstawiają również zestawienie (patrz poniżej), z którego wynika, że udział lodu grenlandzkiego i antarktycznego w zmianach poziomu morza był na początku XXI w. trudny do oszacowania.

Świeżutkie dane z tego roku pokazują trendy zmiany masy lądolodu Antarktydy i Grenlandii, które również wskazują regiony gdzie dochodzi do przyrostu masy, szczególnie we wschodniej Antarktydzie (obrazek poniżej).
Trend zmiany masy lądolodu Antarktydy (a) i Grenlandii (b). Barwy od zielonej w stronę czerwieni i bieli wskazują przyrost masy lodu. Od zieleni w stronę granatu - ubytek masy (wg Barletta et al., 2013).
Myślę, że przyjdzie nam po prostu poczekać jeszcze trochę na analizę efektów globalnego wzrostu temperatury. Być też może, że nie dożyjemy jednoznacznego opracowania i problem pozostawimy wnukom.

Źródła:
Fot. w nagłówku: Christine Zenino (CC-BY)

Barletta, V.R. et al., 2013. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryospherei, 7: 1411-1432. doi:10.5194/tc-7-1411-2013
Battersby, S., 2013. Where melting ice means retreating seas. New Scientist, 2915.
Cazenave, A. & Llovel, W., 2010. Contemporary Sea Level Rise. Annual Review of Marine Science, 2: 145-173. doi: 10.1146/annurev-marine-120308-081105
Cazenave, A. & Nerem, R.S., 2004. Present-day sea level change: observations and causes. Reviews of Geophysics, 42: 2003RG000139
Church, J.A. et al., 2010. Understanding Sea-Level Rise and Variability. Blackwell Publishing Ltd.
Mitrovica, J.X. et al., 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409: 1026-1029.