Zacznę do tego, że Ziemia to nie drewniana, ani żelazna kula z rozlaną po powierzchni wodą, która wypełnia zagłębienia. Ziemia ma dość skomplikowany kształt. Na tyle skomplikowany i niepowtarzalny, że nazwano go geoidą. Geoida ma wybrzuszenia i zagłębienia, których powierzchnia nie pokrywa się z elipsoidalną linią referencyjną stosowaną do pomiarów wysokości. Trudno więc porównać ze sobą poziomy morza w różnych układach odniesienia. Linia "zero" jednego układu odniesienia może różnić się od takiej samej linii w drugim układzie nawet o 50 cm lub więcej w samej tylko Europie. Dla porównania - układ odniesienia Triest (Adriatyk) różni się od układu Kronsztad (Bałtyk) o +0.67 m w stosunku do powierzchni referencyjnej elipsoidy. Trudno więc orzec, czy zmiany poziomu morza np. w układzie Kronsztad dotyczą wyższego poziomu morza czy też odkształcenia geoidy.
Dopiero do kilkunastu lat znamy w miarę dokładny kształt geoidy, który można stosować jako globalny poziom odniesienia w pomiarach satelitarnych. Dlatego też dopiero od niedawna można mówić o globalnych zmianach. W dalszym jednak ciągu pomiary trwają i należy spodziewać się kolejnych, dokładniejszych odwzorowań powierzchni geoidy. Ostatni model grawitacyjny Ziemi EGM2008 pochodzi sprzed paru lat (np. Pavlis et al., 2012). Odkształcenia geoidy powodują, że część wody spływa do zagłębień w geoidzie, więc tam należy spodziewać się wzmożonego napływu wód, większego niż w miejscach wyniesionych. Np. wschodnie wybrzeża USA są obniżone w stosunku do Grenlandii o prawie 150 m (patrz poniższy rysunek). Nierównomierny rozkład materii w skorupie ziemskiej powoduje też nierównomierny rozkład potencjału grawitacyjnego. To jedna z przyczyn, dla której poziom morza nie będzie podnosił się równomiernie na całym świecie, jak w laboratoryjnej menzurce.
![]() |
Kształt geoidy ziemskiej wg modelu EGM2008 z widocznymi odchyleniami w stosunku do referencyjnej elipsoidy (NGA). |
Powyższy akapit zawiera także dalsze wytłumaczenie dotyczące lądolodu grenlandzkiego, który - jak się domyślacie - sporo waży. Z wyliczeń P.J. Petersena wynika, że lądolód grenlandzki waży 2.66946 x 1018 kg. To oczywiście dużo, więcej niż jesteśmy w stanie sobie wyobrazić. Taka masa lodu ma swój potencjał grawitacyjny, który przyciąga wodę oceanu i powoduje jej podniesienie w pobliżu Grenlandii. Gdy zdejmiemy z niej lądolód, Grenlandia stanie się lżejsza, a wtedy woda oceaniczna odpłynie od niej. Przyciąganie grawitacyjne Grenlandii z lądolodem powoduje wygięcie powierzchni oceanu w promieniu dochodzącym do 2000 km, zatem większość pn. Atlantyku ma powierzchnię grawitacyjnie podniesioną (rysunek poniżej).
![]() |
Grawitacyjne ugięcie powierzchni oceanu w pobliżu obiektu o dużej masie (góra); zmiany poziomu morza w zależności od tego który lądolód stopnieje (wg Battersby'ego, 2013). |
Zjawisko obniżenia poziomu morza dotknie w zasadzie całą Europę. Oczywiście im dalej od Grenlandii, tym obniżenie poziomu morza będzie słabsze, ale np. Islandia, Irlandia czy zachodnia Szkocja doczekają się obniżenia poziomu morza, zamiast ogłaszanego nieustannie podniesienia. W Polsce pewnie też poziom morza opadnie, ale nieznacznie (uwaga - nie biorę pod uwagę innych składowych zmian poziomu morza).
Oczywiście, zjawiska te nie zachodzą z dnia na dzień. Trudno więc dokładnie powiedzieć w jakim tempie będzie odbywało się izostatyczne podnoszenie tarczy grenlandzkiej i przyległych do niej obszarów. Z teoretycznych rozważań wynika, że Arktyka wolna od lodu spowoduje ostatecznie podniesienie poziomu głównie w południowym Atlantyku i pd. Pacyfiku - przy założeniu, że czapa lodowa Antarktydy pozostanie nietknięta. Pewien wpływ na poziom morza ma także woda z górskich lodowców, ale podobnie do Grenlandii, ona także spowoduje zdjęcie ciężaru z gór i ich izostatyczne podniesienie, a więc relatywne obniżenie poziomu morza.
![]() |
Rekordowy zasięg lodu antarktycznego z września 2012 (NASA). |
Jak wynika z powyższego obrazka wg Cazenave (tak, to Anny) i Nerema (2004), obecnie ekspansja termiczna ma największe znaczenie. Ci sami autorzy przedstawiają również zestawienie (patrz poniżej), z którego wynika, że udział lodu grenlandzkiego i antarktycznego w zmianach poziomu morza był na początku XXI w. trudny do oszacowania.
Świeżutkie dane z tego roku pokazują trendy zmiany masy lądolodu Antarktydy i Grenlandii, które również wskazują regiony gdzie dochodzi do przyrostu masy, szczególnie we wschodniej Antarktydzie (obrazek poniżej).
Źródła:
Fot. w nagłówku: Christine Zenino (CC-BY)
Barletta, V.R. et al., 2013. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryospherei, 7: 1411-1432. doi:10.5194/tc-7-1411-2013
Battersby, S., 2013. Where melting ice means retreating seas. New Scientist, 2915.
Cazenave, A. & Llovel, W., 2010. Contemporary Sea Level Rise. Annual Review of Marine Science, 2: 145-173. doi: 10.1146/annurev-marine-120308-081105
Cazenave, A. & Nerem, R.S., 2004. Present-day sea level change: observations and causes. Reviews of Geophysics, 42: 2003RG000139
Church, J.A. et al., 2010. Understanding Sea-Level Rise and Variability. Blackwell Publishing Ltd.
Mitrovica, J.X. et al., 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409: 1026-1029.